39,354 research outputs found

    Probing the QCD Critical Point with Higher Moments of Net-proton Multiplicity Distributions

    Full text link
    Higher moments of event-by-event net-proton multiplicity distributions are applied to search for the QCD critical point in the heavy ion collisions. It has been demonstrated that higher moments as well as moment products are sensitive to the correlation length and directly connected to the thermodynamic susceptibilities computed in the Lattice QCD and Hadron Resonance Gas (HRG) model. In this paper, we will present measurements for kurtosis (κ\kappa), skewness (SS) and variance (σ2\sigma^{2}) of net-proton multiplicity distributions at the mid-rapidity (∣y∣<0.5|y|<0.5) and 0.4<pT<0.80.4<p_{T}<0.8 GeV/cc for Au+Au collisions at sNN\sqrt{s_{NN}}=19.6, 39, 62.4, 130 and 200 GeV, Cu+Cu collisions at sNN\sqrt{s_{NN}}=22.4, 62.4 and 200 GeV, d+Au collisions at sNN\sqrt{s_{NN}}=200 GeV and p+p collisions at sNN\sqrt{s_{NN}}=62.4 and 200 GeV. The moment products κσ2\kappa \sigma^{2} and SσS \sigma of net-proton distributions, which are related to volume independent baryon number susceptibility ratio, are compared to the Lattice QCD and HRG model calculations. The κσ2\kappa \sigma^{2} and SσS \sigma of net-proton distributions are consistent with Lattice QCD and HRG model calculations at high energy, which support the thermalization of the colliding system. Deviations of κσ2\kappa \sigma^{2} and SσS \sigma for the Au+Au collisions at low energies from HRG model calculations are also observed.Comment: 10 pages, 8 figures, Proceedings of 27th Winter Workshon on Nuclear Dynamics. Feb. 6-13 (2011

    Improved lattice QCD with quarks: the 2 dimensional case

    Get PDF
    QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from t'Hooft phase) are computed. We find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures

    Study of solvent-based carbon capture for cargo ships through process modelling and simulation

    Get PDF
    Controlling anthropogenic CO2 emission is crucial to mitigate global warming. Marine CO2 emissions accounts for around 3% of the total CO2 emission worldwide and grows rapidly with increasing demand for passenger and cargo transport. The International Maritime Organization (IMO) has adopted mandatory measures to reduce greenhouse gases (GHGs) emissions from international shipping. This study aims to explore how to apply solvent-based post-combustion carbon capture (PCC) process to capture CO2 from the energy system in a typical cargo ship and to evaluate the cost degrees of different integration options through simulation-based techno-economic assessments. The selected reference cargo ship has a propulsion system consisting of two four-stroke reciprocating engines at a total power of 17 MW. The study first addressed the challenge on model development of the marine diesel engines and then developed the model of the ship energy system. The limitations of implementing onboard carbon capture were discussed. Two integration options between the ship energy system and the carbon capture process were simulated to analyse the thermal performance of the integrated system and to estimate equipment size of the carbon capture process. It was found that the carbon capture level could only reach 73% when the existing ship energy system is integrated with the PCC process due to limited heat and electricity supply for CCS. The cost of CO2 captured is around 77.50 €/ton CO2. With installation of an additional gas turbine to provide extra energy utilities to the capture plant, the carbon capture level could reach 90% whilst the cost of CO2 captured is around 163.07 €/ton CO2, mainly because of 21.41% more fuel consumption for the additional diesel gas turbine. This is the first systematical study in applying solvent-based carbon capture for ships, which will inspire other researchers in this area

    Monte Carlo Hamiltonian of lattice gauge theory

    Full text link
    We discuss how the concept of the Monte Carlo Hamiltonian can be applied to lattice gauge theories.Comment: "Non-Perturbative Quantum Field Theory: Lattice and Beyond", Guangzhou, China 200

    Oxygen Isotope Effect on the Spin State Transition in (Pr0.7_{0.7}Sm0.3_{0.3})0.7_{0.7}Ca0.3_{0.3}CoO3{_3}

    Full text link
    Oxygen isotope substitution is performed in the perovskite cobalt oxide (Pr0.7_{0.7}Sm0.3_{0.3})0.7_{0.7}Ca0.3_{0.3}CoO3{_3} which shows a sharp spin state transition from the intermediate spin (IS) state to the low spin (LS) state at a certain temperature. The transition temperature of the spin state up-shifts with the substitution of 16O^{16}O by 18^{18}O from the resistivity and magnetic susceptibility measurements. The up-shift value is 6.8 K and an oxygen isotope exponent (αS\alpha_S) is about -0.8. The large oxygen isotope effect indicates strong electron-phonon coupling in this material. The substitution of 16^{16}O by 18^{18}O leads to a decrease in the frequency of phonon and an increase in the effective mass of electron (mm∗^\ast), so that the bandwidth W is decreased and the energy difference between the different spin states is increased. This is the reason why the TsT_s is shifted to high temperature with oxygen isotopic exchange.Comment: 4 pages, 3 figure
    • …
    corecore